Regression Based Emission Models for Vehicle Contribution to Climate Change

The reduction of carbon emissions within the transportation sector is one of the most important steps against the threat of global warming. Unless strict emissions-reduction and fuel economy policies are in place, the resulting pollution is expected to increase dramatically along with the amount of vehicles on the roads. An accurate quantification of the emissions produced by each type of vehicle is essential in order to evaluate the social and environmental impacts derived. The literature shows a wide range of pollutant emission models, whether empirical, database centric or regression based. In this paper, we propose and analyze 3 regression based models built on data from pollutant emission databases and knowledge models. The first model is based on an exponential regression that improves the results given in the state of the art. In contrast, the other two models are based on different Artificial Intelligence techniques, namely Artificial Neural Networks and Support Vector Regression, which further improve the results.